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Abstract. The ring structure of the integral cohomology of comple-
ments of real linear subspace arrangements is considered. While the ad-
ditive structure of the cohomology is given in terms of the intersection
poset and dimension function by a theorem of Goresky and MacPher-
son, we describe the multiplicative structure in terms of the intersection
poset, the dimension function and orientations of the participating sub-
spaces for the class of arrangements without pairs of intersections of
codimension one. In particular, this yields a description of the integral
cohomology ring of complex arrangements conjectured by Yuzvinsky.
For general real arrangements a weaker result is obtained. The approach
is geometric and the methods are elementary.
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1. Introduction

The ring structure of the integral cohomology of complements of real
linear subspace arrangements is the concern of this article. Since the additive
structure of this cohomology is given by a result of Goresky and MacPherson
[GM88], the task is to describe the multiplicative structure. In order to
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provide a context for our results we recall some previously achieved ones on
the ring structure.

⊲ Using rational models De Concini and Procesi derived that the mul-
tiplicative structure of the rational cohomology in the case of com-
plex arrangements is determined by combinatorial data: intersec-
tion lattice and dimension function [CP95]. Their techniques were
applied by Yuzvinsky to give an explicit description for the rational

cohomology ring for complex arrangements [Yuz98].
⊲ Arnol’d’s investigation and conjectures on the cohomology ring of

complex braid arrangements [Arn69] lead to the description of the
cohomology ring of complex hyperplane arrangements by Brieskorn
[Bri73] which was formulated and generalized in a combinatorial set-
ting by Orlik and Solomon. Generalizing the Orlik-Solomon result
on complex hyperplane arrangements [OS80] Feichtner and Ziegler
obtained a presentation for the integral cohomology ring of the com-
plement of a complex arrangement with geometric intersection lat-

tice [FZ00] by extending combinatorial stratification methods from
Björner and Ziegler [BZ92]. Independently, Yuzvinsky obtained this
result as an application of his work on the rational cohomology rings
of complex arrangements mentioned above [Yuz98], [Yuz99].

⊲ Ziegler gave a presentation for the integral cohomology ring of a
real 2-arrangement [Zie93]. Applying this result he showed that
intersection lattice and dimension function as combinatorial data
do not suffice to determine the ring.

In this article we

⊲ describe the integral cohomology ring structure for general real ar-
rangements up to an error term: Theorem 7.5,

⊲ determine the integral cohomology ring structure for (≥ 2)-arrange-
ments, a class generalizing complex arrangements and real 2-ar-

rangements: Theorem 5.2,
⊲ give a presentation for the integral cohomology ring of (≥ 2)-ar-

rangements with geometric intersection lattice: Theorem 5.5.

Having Ziegler’s result in mind we extend the combinatorial data by orien-

tation information in the general case, i.e., all spaces in the arrangement are
considered to have a specific orientation. Since all complex spaces possess
a canonical orientation the orientation information becomes unnecessary in
the case of complex arrangements. In this special case our result shows
that, as Yuzvinsky conjectured, his description of the cohomology ring is
also valid for integer coefficients [Yuz98], which was partially shown before
for complex coordinate arrangements by one of the current authors [Lon00].

Apart from our new results this article unifies the results and simplifies

the methods compared to those previously known: we employ elementary
methods from combinatorics and topology only.
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Our results are based on the description of the homology of the link by
Goresky and MacPherson [GM88] in the setting of the approach of Ziegler
and Živaljević [ZŽ93] who provided a homotopy model of the link. In fact,
there is a purely combinatorially defined ring structure on this homology
given by the intersection lattice, the dimension function, and the orienta-

tion information. The main result is that this combinatorially defined ring
structure coincides with the cohomology ring of the arrangement in case of
a (≥ 2)-arrangement.

An important step in the proof is the insight that for (≥ 2)-arrangements
the Goresky-MacPherson isomorphism is canonical. A crucial distinction
in the description of the ring structure is given by a certain codimension
condition: in all computations of cohomology rings of subspace arrangements
that have been done in the past, cohomology classes multiply trivially as
long as they do not satisfy such a condition (cf., e.g., [OS80], [BZ92], [FZ00],
[Lon00]). This will also be true for the (≥ 2)-arrangements that we consider,
however not for general real arrangements.

After a first version of this article was finished we learned about the recent
work of Deligne, Goresky and MacPherson [DGM99], where similar ques-
tions are considered. By a sheaf theoretic approach using derived categories
they obtain – among others – comparable results.

Organization of the paper. In Section 2 we first introduce notation. In
particular, we define our notion of combinatorial data which is somewhat
non-standard because of the fact that all spaces are considered to be ori-
ented. Furthermore, the notion of generic points in our setting is introduced.
In Section 3 we provide a version of the Goresky-MacPherson isomorphism,
essentially relying on the work of Ziegler and Živaljević. The subsequent
Section 4 is the heart of this article describing the combinatorial product
on homology and relating it to the intersection product. The main theorem
for the class of (≥ 2)-arrangements is now achieved in Section 5 as an ap-
plication of the previous results. The section concludes with a presentation
for the cohomology ring of a (≥ 2)-arrangement with geometric intersection
lattice. Section 6 is an example section that demonstrates the importance
of the restriction to (≥ 2)-arrangements. In Section 7 we will see what
still can be said in the general case. Finally, a section explaining the corre-
spondence of our approach in this paper to one starting with the homotopy
model by Ziegler and Živaljević, which was our first approach, is appended.
This section also draws the connection to the language of Yuzvinsky’s article
[Yuz98].

Acknowledgments. We would like to thank Elmar Vogt and Günter M.
Ziegler for constant support and valuable advice during the time this work
has been done. In particular, we want to thank Mark Goresky and Robert
MacPherson for the critical reading of an earlier version of this paper, and
for many helpful remarks.
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2. Preliminaries

Notation. Let A be a (linear) subspace arrangement in a finite-dimensional
R-vector space W , i.e., a finite family of linear subspaces of W . A may be
empty, but must not contain W .

Let u ⊆ v ⊆ W be a linear subspaces. By πu we denote the quotient
map W →W/u and πu,v denotes the quotient map πu,v : W/u→W/v. We
define Au to be the subarrangement Au := {z ∈ A : u ⊆ z} in W and denote
by A/u the arrangement in W/u given by A/u := {πu[z] : z ∈ Au}.

The objective of this paper is to relate topological and combinatorial data.

Topological data. Associated with the arrangement A is the link LA =
S(W ) ∩

⋃
A, i.e., the intersection of the arrangement with the unit sphere

in W with respect to some norm, and the complement MA = W \
⋃
A. We

are interested in the cohomology ring of the complement.

Combinatorial data. As mentioned in the introduction our combinatorial
data is slightly extended. It is given by:

⊲ The set of all intersections of subsets of A partially ordered by re-
verse inclusion: the intersection lattice of A, denoted by P . It has
maximal element ⊤ :=

⋂
A and minimal element ⊥ :=

⋂
Ø = W .

The lattice operation join is denoted by ∨ and is given in our situ-
ation by intersection.

⊲ P is furnished with a dimension function d : P → N which assigns
to each space its real dimension.

We assume that the following supplementary data is also given, i.e., we
consider oriented arrangements.

⊲ There is a sign function

ǫ : {(u, v) ∈ P × P : u + v = W} −→ {±1}.

For this we assume all quotient spaces W/u, u ∈ P , to be oriented
and define ǫu,v to be the degree of the linear isomorphism

(πu∩v,v, πu∩v,u) : W/(u ∩ v)→W/v ×W/u.

For elements u, v in the intersection lattice P of A we denote by [u, v], (u, v],
and [u, v) the respective intervals in P .

Generic points. The map relating combinatorial data with topological
data will depend on a choice of generic points. Here by a generic point

in v, v ∈ P , we simply mean a point in v\
⋃

z∈(v,⊤] z. With a choice of

generic points we either refer to a function xu for a particular u ∈ P , or to
a collection x of such functions xu, u ∈ P ,

[W, u]→W/u

v 7→ xu
v
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with xu
v ∈ πu[v]\

⋃
v′∈(v,u] π

u[v′].

Specific arrangements. Complex arrangements, i.e., finite families of lin-
ear subspaces of C

n, will be considered as special real subspace arrange-
ments in R

2n. In this case all of the associated quotient spaces are oriented
canonically and the sign function ǫ only takes the value +1. Therefore, for
complex arrangements the orientation data is superfluous. A much larger
class of subspace arrangements is given by the family of (≥ 2)-arrangements.
2.1. Definition. An arrangement A in W is called a (≥ 2)-arrangement if
d(u)− d(v) ≥ 2 for all u, v ∈ P with v a proper subspace of u.

The codimension condition. As already mentioned the following notion
leads to a crucial distinction when describing the ring structure of the co-
homology of an arrangement.
2.2. Definition. Let A be a subspace arrangement in W , and let u, v ∈ P .
We will say that u and v satisfy the codimension condition if they are in
general position, i.e., codimu + codim v = codimu ∩ v, which is equivalent
to u + v = W .

Note that this is a purely combinatorial condition as it is equivalent to
the condition d(u) + d(v)− d(u ∨ v) = d(W ).

3. The Goresky-MacPherson isomorphism

Given an arrangement A in W , our ultimate goal is to describe the coho-
mology ring of W\

⋃
A. Now, if ǫ > 0 is a real number and BW

ǫ , or simply
Bǫ, denotes the corresponding open ball in W (to some given norm), we
have a Poincaré–Lefschetz duality isomorphism

Hk
(
W\

⋃
A
) i∗
−→
∼=

Hk
(
BW

ǫ \
⋃
A
) ⌢[W ]
−−−→

∼=
Hd(W )−k

(
W,
⋃
A ∪ CBW

ǫ

)
.

Here i denotes inclusion, [W ] the orientation class of W , and CBǫ the com-
plement of Bǫ. The isomorphism is independent of ǫ and the norm used to
define Bǫ. To desribe the cohomology ring H∗(W\

⋃
A) we will work mainly

in H∗(W,
⋃
A∪CBǫ) and with the intersection product • there, which is de-

fined by
(α ⌢ [W ]) • (β ⌢ [W ]) = (α ⌣ β) ⌢ [W ].

For any partially ordered set Q we denote by ∆(Q) the order complex of Q.
It is the (abstract) simplicial complex on the vertex set Q, whose simplices
are given by chains in Q, i.e., sets of pairwise comparable elements. Given
an intersection u of A and generic points xu we define a map φxu

: ∆[W, u]→
W/u which is affine on simplices and satisfies

φxu
(w) = xu

w, w ∈ [W, u].

So φxu
is just the affine continuation of xu. Note that we tacitly identified

the abstract simplicial complex with its geometric realization and we will do
so for the rest of the article.
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Now consider a simplex σ = 〈v0, . . . , vk〉 ∈ ∆[W, u], v0 < · · · < vk. Then
φxu

[σ] ⊆ πu[v0] and φxu
[σ] ∩ πu[vk] = {xu

vk
}. Therefore φxu[

∆(W, u]
]
⊆⋃

A/u and φxu[
∆[W, u)] ⊆ W/u\Bǫ for small enough ǫ. We thus have a

map of pairs

φxu
:
(
∆[W, u], ∆(W, u] ∪∆[W, u)

)
→
(
W/u,

⋃
A/u ∪ CBǫ

)
.

Since we will need these pairs all the time, we set

∆∆[W, u] :=
(
∆[W, u], ∆(W, u] ∪∆[W, u)

)
.

Furthermore (πu)−1[
⋃
A/u] =

⋃
Au ⊆ A and (πu)−1[CB

W/u
ǫ ] ⊆ CBW

ǫ when
W/u is given the quotient norm and we can consider the maps

Hk(∆∆[W, u])
φxu
∗−−→ Hk

(
W/u,

⋃
A/u ∪ CBǫ

) πu
!−→ Hk+d(u)

(
W,
⋃
A ∪ CBǫ

)
.

Here πu
! denotes the transfer of πu, where the transfer is defined, for any

map f : Mn0
0 → Mn1

1 between manifolds and Ai ⊆ Xi ⊆ Mi, such that

H∗(Mi\Ai, Mi\Xi)
⌢[Mi]
−−−−→ H∗(Xi, Ai) are isomorphisms and f−1[X1] ⊆ X0,

f−1[A1] ⊆ A0, by f! : Hk(X1, A1)
α⌢[M1]7→f∗α⌢[M0]
−−−−−−−−−−−−−→ Hk+n0−n1(X0, A0), see

for example [Dol72, VIII.10].
The next proposition is a formulation of the Goresky-MacPherson isomor-

phism [GM88], originally proven by means of stratified Morse theory. Ziegler
and Živaljević [ZŽ93] gave an elementary proof based on a homotopy model
for the link. We give a self-contained proof which is an adaptation of their
proof. Section 8 explains the correspondence of our approach to theirs.

3.1. Proposition. Let A be an arrangement in W and xu be a choice of

generic points. Then the map

∑

u∈[W,⊤]

πu
! ◦ φxu

∗ :
⊕

u∈[W,⊤]

H∗

(
∆∆[W, u]

)
→ H∗

(
W,
⋃
A ∪ CBǫ

)

is an isomorphism.

Proof. The proof is by induction on the cardinality of the intersection lat-
tice P . If the cardinality of P equals 1 we must have A = Ø. In this case
the proposition is trivial, since φxW

is a homeomorphism and πW a homo-
topy equivalence. Now let |P | > 1 and a ∈ A a subspace of W that is not
contained in any other element of A. For any u ∈ P we have a commutative
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diagram

H∗(W,
⋃

(A\{a}) ∪ CBǫ) H∗(W,
⋃
A ∪ CBǫ)

d

H∗(
⋃
A ∪ CBǫ,

⋃
(A\{a}) ∪ CBǫ)

H∗(W/u,
⋃

(A\{a})/u ∪ CBǫ)

πu
!

H∗(W/u,
⋃
A/u ∪ CBǫ)

d

πu
!

H∗(
⋃
A/u ∪ CBǫ,

⋃
(A\{a})/u ∪ CBǫ)

πu
!

H∗(∆[W, u], ∆((W, u]\{a}) ∪∆[W, u))

φxu
∗

H∗(∆∆[W, u])

d

φxu
∗

H∗(∆(W, u] ∪∆[W, u), ∆((W, u]\{a}) ∪∆[v, u)),

φxu
∗

where the triangles come from triples of spaces and are exact. Our aim is to
show that taking direct sums over all u ∈ P in the lower two triangles makes
the composition in the right column an isomorphism. By the five-lemma it
suffices to show this for the other two columns. Regarding the left column,
note that the lower group is trivial if u = a, and that otherwise the map
H∗(∆∆([W, u]\{a})) → H∗(∆[W, u], ∆((W, u]\{a}) ∪ ∆[W, u)) induced by
inclusion is an isomorphism. (Use excision and the fact that order complexes
of posets containing a minimal element are contractible.) Hence, considering
the arrangement in W consisting of all elements of P\{a} the left column
yields an isomorphism by induction. Regarding the middle column define A′

to be the arrangement in a consisting of
{
w∩a : w ∈ A\{a}

}
. Its intersection

lattice is [a,⊤]. Now for u ∈ [a,⊤] the diagram

H∗(a,
⋃
A′ ∪ CBǫ)

∼=
exc.

H∗(
⋃
A ∪ CBǫ,

⋃
(A\{a}) ∪ CBǫ)

H∗(a/u,
⋃
A′/u ∪ CBǫ)

∼=
exc.

πu
!

H∗(
⋃
A/u ∪ CBǫ,

⋃
(A\{a})/u ∪ CBǫ)

πu
!

H∗(∆∆[a, u])
∼=

exc.

φxu
∗

H∗(∆(W, u] ∪∆[W, u), ∆((W, u]\{a}) ∪∆[W, u))

φxu
∗

commutes, and for u ∈ [W,⊤], u 6≥ a the isomorphism in the bottom row
also exists and shows that the group on the right is trivial. Therefore the
second column of the original diagram yields an isomorphism as well. �

4. Products

Products of lattices. Let P and Q be lattices. ∆(P ×Q) is just ∆(P )×
∆(Q) endowed with the usual simplicial structure that a product of two
simplicial complexes (with vertex orders) is given. Therefore, if C∗ denotes



8 MARK DE LONGUEVILLE AND CARSTEN A. SCHULTZ

the ordered chain complex, there is the well known map

C∗(∆P )⊗ C∗(∆Q)
×
−→ C∗(∆(P ×Q)).

It is given by

〈u0, . . . , uk〉 ⊗ 〈v0, . . . , vl〉 7→
∑

0=i0≤···≤ik+l=k
0=j0≤···≤jk+l=l

∀r (ir−1,jr−1) 6=(ir,jr)

σi,j〈(ui0 , vj0), . . . , (uik+l
, vjk+l

)〉

for chains u0 < u1 < · · · < uk and v0 < v1 < · · · < vl, where the σi,j are signs
determined by σi,j = 1 if k = 0 or l = 0 and by d(a×b) = da×b+(−1)ka×db.

Because of the equality of pairs ∆∆P ×∆∆Q = ∆∆(P ×Q), this induces a
product

× : H∗(∆∆P )⊗H∗(∆∆Q)→ H∗(∆∆(P ×Q)).

Products of arrangements and exterior products of homology

classes. Let A be an arrangement in U with intersection lattice P and B an
arrangement in V with intersection lattice Q. We define their product to be
the arrangement in U×V given by A×B := {U×v : v ∈ B}∪{u×V : u ∈ A}.
Note that (U,

⋃
A)× (V,

⋃
B) = (U ×V,

⋃
(A×B)). The intersection lattice

of A×B is isomorphic to the product lattice P×Q via P×Q ∋ (u, v) 7→ u×v.
We will identify them.

4.1. Proposition. Let A be an arrangement in U with intersection lattice P
and B an arrangement in V with intersection lattice Q. Furthermore let

u ∈ P , v ∈ Q and let xu, yv be generic points. Then

xu × yv : [U, u]× [V, v]→ U/u× V/u = (U × V )/(u× v)

is a choice of generic points for the intersection u × v in A × B, and for

a ∈ Hk(∆∆[U, u]), b ∈ Hl(∆∆[V, v]) we have

πu
! (φxu

∗ (a))× πv
! (φyv

∗ (b)) = (−1)d(u)(d(V )−d(v)−l)πu×v
! (φxu×yv

∗ (a× b)).

Proof. The first statement is clear. For the second, note that we have φxu
×

φyv
= φxu×yv

and πu × πv = πu×v. Therefore the diagram

Hk(∆∆[U,u])⊗Hl(∆∆[V,v])
×

φxu
∗ ⊗φ

yv

∗

Hk+l(∆∆[(U,V ),(u,v)])

φ
xu×yv

∗

Hk(U/u,
S

A/u∪CBǫ)⊗Hl(V/v,
S

B/v∪CBǫ)
×

(−1)d(u)(d(V )−d(v)−l)πu
! ⊗πv

!

Hk+l(U×V/u×v,
S

(A×B)/u×v∪CBǫ)

πu×v
!

Hk+d(u)(U,
S

A∪CBǫ)⊗Hl+d(v)(V,
S

B∪CBǫ)
×

Hk+l+d(u×v)(U×V,
S

(A×B)∪CBǫ)

commutes. �
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Intersection products of homology classes satisfying the codimen-

sion condition. Let A be an arrangement in W and u, v intersections in
A. The join operation

∨ : [W, v]× [W, u]→ [W, u ∩ v]

(z, w) 7→ z ∩ w

is an isotonic map and therefore induces a simplicial map of the associated
order complexes. Now assume that u and v satisfy the codimension condition
u + v = W . Then ∨ is injective and induces a simplicial map of pairs

∆∆[W, v]×∆∆[W, u] −→ ∆∆[W, u ∩ v].

Furthermore, from the injectivity follows that for given generic points xu

and xv there are generic points xu∩v such that

(πu∩v,v, πu∩v,u)(xu∩v
w∩z) = (xv

z , x
u
w) for all w ∈ [W, u], z ∈ [W, v].

Here (πu∩v,v, πu∩v,u) : W/(u ∩ v) → W/v ×W/u is the linear isomorphism
we used to define ǫu,v.
4.2. Proposition. Let A be an arrangement in W and u, v intersections

in A, such that u + v = W . Given generic points xu and xv we have for

a ∈ Hk(∆∆[W, u]), b ∈ Hl(∆∆[W, v]), and the generic points xu∩v constructed

above, that

πu
! (φxu

∗ (a)) • πv
! (φxv

∗ (b)) = ǫu,v(−1)l(d(W )−d(u))πu∩v
! (φxu∩v

∗ (∨∗(a × b)).

Proof. Denoting by ∆ the diagonal map W →W ×W we have

πu
! (φxu

∗ (a)) • πv
! (φxv

∗ (b)) =

= (−1)(d(W )+k+d(u))(l+d(v))∆!(π
v
! (φxv

∗ (b))× πu
! (φxu

∗ (a))).

From Proposition 4.1 we know, that

πv
! (φxv

∗ (b))× πu
! (φxu

∗ (a)) = (−1)d(v)(d(W )−d(u)−k)πv×u
! (φxv×xu

∗ (b× a)).

Now consider the diagram

Hk+l(∆∆[(W, W ), (v, u)])
∨∗

φxv×xu

∗

Hk+l(∆∆[W, u ∩ v])

φxu∩v
∗

Hk+l(W/v ×W/u,
⋃

(A/v ×A/u) ∪ CBǫ)
ǫu,vh!

πv×u
! =(πv×πu)!

Hk+l(W/u∩v,
⋃
A/u∩v ∪ CBǫ)

πu∩v
!

Hk+l+d(u)+d(v)(W ×W,
⋃

(A×A) ∪ CBǫ)
ǫu,v∆!

Hk+l+d(u∩v)(W,
⋃
A ∪ CBǫ),

where h = (πu∩v,v, πu∩v,u). For α ∈ H∗((B
W/v
ǫ ×B

W/u
ǫ )\

⋃
(A/v ×A/u))

we have

(h∗h!)(α ⌢ [W/v ×W/u]) = h∗(h
∗α ⌢ [W/(u ∩ v)]) =

= α ⌢ h∗[W/(u ∩ v)] = ǫu,vα ⌢ [W/v ×W/u]



10 MARK DE LONGUEVILLE AND CARSTEN A. SCHULTZ

by definition of ǫu,v and therefore ǫu,vh! = h−1
∗ . Since furthermore

h ◦ φxu∩v
◦ ∨ = φxv×xu

by construction of xu∩v, the upper square commutes. The lower square
commutes, because (πv×πu) ◦∆ = h ◦πu∩v. Multiplying the signs together
with ∨∗(a× b) = (−1)kl ∨∗ (b× a) yields the desired result. �

Intersection products of homology classes not satisfying the codi-

mension condition. Now let A be an arrangement in W and u, v intersec-
tions in A with u+ v 6= W . Then there exists a non-trivial linear functional
Λ: W → R with kernel containing u+ v. Denote the induced functionals on
W/u and W/v by Λu and Λv, respectively. Now there are generic points xu

and yv such that

Λu(xu
w) ≥ 0 for all w ∈ (W, u], Λu(xu

W ) > 0,

Λv(y
v
w) ≤ 0 for all w ∈ (W, v], Λv(y

v
W ) < 0.

4.3. Proposition. Let A be an arrangement in W and u, v intersections

in A with u + v 6= W . Then, for generic points xu and yv as above, the

composition

H∗(∆∆[W, u])⊗H∗(∆∆[W, v])

(πu
! ◦φ

xu
∗ )⊗(πv

! ◦φ
yv

∗ )
−−−−−−−−−−−−→ H∗(W,

⋃
A ∪ CBǫ)⊗H∗(W,

⋃
A ∪ CBǫ)

•
−−→ H∗(W,

⋃
A ∪ CBǫ)

is the zero map.

Proof. The idea is roughly that the carriers of Im(πu
! ◦φ

xu

∗ ) and Im(πv
! ◦ φyv

∗ )
are seperated by the hyperplane ker Λ, such that these carriers intersect only
in
⋃
A.

Setting X := φxu
[[W, u]], Y := φyv

[[W, v]] we have

X ∩ Λ−1
u [(−∞, 0]] ⊆

⋃
A/u, Y ∩ Λ−1

v [[0, +∞)] ⊆
⋃
A/v,

and therefore, with X̃ := (πu)−1[X] and Ỹ := (πv)−1[Y ],

X̃ ∩ Λ−1[(−∞, 0]] ⊆
⋃
A, Ỹ ∩ Λ−1[[0, +∞)] ⊆

⋃
A.
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It follows that X̃ ∩ Ỹ ⊆
⋃
A and that the lower left group in the following

diagram is zero.

H∗(∆∆[W,u])⊗H∗(∆∆[W,v])

φxu
∗ ⊗φ

yv

∗

φxu
∗ ⊗φ

yv

∗

H∗(X,X∩(
S

A/u∪CBǫ))⊗H∗(Y,Y ∩(
S

A/v∪CBǫ))

πu
! ⊗πv

!

i∗
H∗(W,

S

A/u∪CBǫ)⊗H∗(W,
S

A/v∪CBǫ)

πu
! ⊗πv

!

H∗(X̃,X̃∩(
S

A∪CBǫ))⊗H∗(Ỹ ,Ỹ ∩(
S

A∪CBǫ))

•

i∗
H∗(W,

S

A∪CBǫ)⊗H∗(W,
S

A∪CBǫ)

•

H∗(X̃∩Ỹ ,X̃∩Ỹ ∩(
S

A∪CBǫ))
i∗

H∗(W,
S

A∪CBǫ)

The diagram is commutative. To see this, note that if i : W → W is the
identity map, and Ai ⊂ Xi ⊂ W , i = 0, 1, with (A0, X0) ⊂ (A1, X1) and
such that ⌢ [W ] : H∗(M−Ai, M−Xi)→ H∗(Xi, Ai) are isomorphisms, the
maps i∗, i! : H∗(X0, A0)→ H∗(X1, A1) are both defined and agree. �

5. On (≥ 2)-arrangements

In Proposition 4.2 and Proposition 4.3 we computed the intersection prod-
uct of homology classes. These were obtained for particular choices of generic
points. For (≥ 2)-arrangements the following lemma will allow us to work
with any choice of generic points.

5.1. Lemma. Let A be a (≥ 2)-arrangement in W , let u ∈ P be an in-

tersection of A, and xu, x̃u be choices of generic points for u. Then the

affine extensions φxu
and φx̃u

are homotopic as maps of pairs ∆∆[W, u] →
(W,

⋃
A/u ∪ CBǫ).

Proof. For any w ∈ [W, u] the space πu[w] \
⋃

w′∈(w,u] π
u[w′] is connected by

the (≥ 2)-assumption. Choose a path Xw connecting xu
w and x̃u

w. Then the
homotopy is given by the affine extension of X. �

Consequently, in the situation of a (≥ 2)-arrangement the Goresky-MacPher-
son isomorphism from Proposition 3.1 is independent of the choice of generic
points. In particular, we obtain a complete combinatorial description of the
intersection product via the sequence of maps

H∗(∆∆[W, u])⊗H∗(∆∆[W, v]) −→ H∗(W,
⋃
A ∪ CBǫ)⊗H∗(W,

⋃
A ∪ CBǫ)

•
−→ H∗(W,

⋃
A ∪ CBǫ)

∼=
←−

⊕

w∈[W,⊤]

H∗

(
∆∆[W, w]

)
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5.2. Theorem. If A is a (≥ 2)-arrangement, then the intersection product

is given by the combinatorial data as follows.

Hk(∆∆[W, u])⊗Hl(∆∆[W, v]) −→ Hk+l(∆∆[W, u ∨ v])

a⊗ b 7−→






ǫu,v(−1)l(d(W )−d(u)) ∨∗ (a× b),

if d(u) + d(v)− d(u ∨ v) = d(W ),

0, else.

Proof. Immediate by Proposition 3.1, Proposition 4.2, and Proposition 4.3
together with Lemma 5.1. �

Via duality this yields a description of the ⌣-product multiplication of
the integral cohomology of the complement of A.

Geometric (≥ 2)-arrangements.

Historical remarks. In the case of a complex hyperplane arrangement a de-
scription of the integral cohomology ring in terms of generators and relations
was given by Arnol’d [Arn69] and Brieskorn [Bri73]. A combinatorial de-
scription of their result was given by Orlik and Solomon [OS80].

Goresky and MacPherson [GM88, Chapter III] computed the Poincaré
polynomial for the class of c-arrangements which can be considered as gen-
eralized hyperplane arrangements.
5.3. Definition. An arrangement A = {H1, . . . , Hm} in an n-dimensional
real vector space W is called a c-arrangement, if codimR(Hi) = c for all i,
and for all pairs of elements u ⊂ v in the intersection lattice P we have that
codimR(u ⊂ v) is an integral multiple of c.

Ziegler gave a presentation of the integral cohomology of the complement
of 2-arrangements [Zie93] generalizing the result of Orlik and Solomon. He
used this presentation to give an example of a complex and a 2-arrangement
with the same combinatorial data – intersection poset and dimension func-
tion – which yield different cohomology rings. In his article the orthogonal
complements of the spaces are oriented by the choice of normal vectors for
pairs of real hyperplanes whose intersections yield the codimension-2-spaces
in the arrangement.

Hyperplane- and c-arrangements belong to the much larger class of ar-
rangements with geometric intersection lattice.
5.4. Definition. A lattice L is geometric, if the following conditions hold:

⊲ it is atomic, i.e., every element is the join of a set of atoms,
⊲ it admits a rank function rk, i.e., for all x ∈ L all maximal chains

from the smallest element to x have the same length (which is
rk(x) + 1),

⊲ its rank function is semimodular, i.e., for all x, y ∈ L we have

rk(x ∨ y) + rk(x ∧ y) ≤ rk(x) + rk(y).
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For the class of complex arrangements with geometric intersection lat-
tice Feichtner and Ziegler [FZ00], and Yuzvinsky [Yuz98], [Yuz99] gave a
presentation of the integral cohomology ring of the complement.

A presentation for the cohomology ring of a geometric (≥ 2)-arrangement.

We give a presentation for the cohomology ring of the complement of a
(≥ 2)-arrangement with geometric intersection lattice, thus generalizing the
results in [FZ00], [Yuz98], respectively. Since our theorem can be easily
achieved by the same techniques as in Yuzvinsky’s article [Yuz99] plugging
in our stronger Theorem 5.2, we omit the proof. It is essentially based on
the understanding of the homology of geometric lattices and the cross cut
complex (cf. [Bjö94]).

Recall that a subset σ of atoms of a geometric lattice L is called indepen-

dent if rk
∨

σ = |σ|, otherwise it is called dependent.
5.5. Theorem. Let A be a (≥ 2)-arrangement in W with geometric intersec-

tion lattice L. Fix an arbitrary linear order on the set of atoms of L. Then

the integral cohomology ring of the complement MA has the presentation

0 −→ I −→ T ∗

(
⊕

σ ind.

Z · eσ

)
π
−→ H∗(MA; Z) −→ 0,

where T ∗ denotes the tensor algebra and the sum in the middle is over all in-

dependent sets σ of atoms of L, and π(eσ) ∈ H(d(W )−d(∩σ))−|σ|(MA; Z). The

ideal I of relations is generated by the following three families of elements.

(i) For every minimal dependent set σ = {a0, . . . , ak} of atoms of L:

k∑

i=0

(−1)ieσ\{ai}.

(ii) For all pairs σ, τ of independent sets of atoms of L such that d(
⋂

σ)+
d(
⋂

τ)− d(
⋂

σ ∩
⋂

τ) = d(W ):

eσ ∧ eτ − ǫ∩σ,∩τ (−1)|τ |(d(W )−d(∩σ))(−1)sign(σ,τ)eσ∪τ ,

where sign(σ, τ) is the sign of the permutation that orders the el-

ements of σ followed by the elements of τ , each already ordered,

ascendingly according to the chosen linear order.

(iii) For all pairs σ, τ of independent sets of atoms of L such that d(
⋂

σ)+
d(
⋂

τ)− d(
⋂

σ ∩
⋂

τ) 6= d(W ):

eσ ∧ eτ .

In particular we obtain a presentation for general real c-arrangements gen-
eralizing Ziegler’s result in [Zie93].
5.6. Corollary. Let A = {H1, . . . , Hm} be a c-arrangement in W . Then the

integral cohomology ring of the complement MA has the presentation

0 −→ I −→ Λ∗
Z

m π
−→ H∗(MA; Z) −→ 0,
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if c is even, Λ∗ denoting the exterior algebra, and

0 −→ I −→ S∗
Z

m π
−→ H∗(MA; Z) −→ 0,

if c is odd, S∗ denoting the symmetric algebra, and π(ei) ∈ Hc−1(MA; Z) for

the canonical basis {e1, . . . , em} of Z
m. The ideal I of relations is generated

by

k∑

i=0

(−1)iǫ(a0, . . . , âi, . . . , ak)ea0 ∧ · · · ∧ êai ∧ · · · ∧ eak
,

for all minimal dependent sets {Ha0 , . . . , Hak
}, where

ǫ(i0, . . . , ir) = ǫHi0
,Hi1

ǫHi0
∩Hi1

,Hi2
· · · ǫHi0

∩Hi1
∩···∩Hir−1

,Hir

for any subset {i0, . . . , ir} ⊆ {1, . . . , m}.

5.7. Remarks.

⊲ In the light of the Goresky-MacPherson isomorphism from Propo-
sition 3.1 the map π in Theorem 5.5 is given explicitly by:

π : Λ∗

(
⊕

σ ind.

Z · eσ

)
−→

⊕

u∈[W,⊤]

H∗

(
∆∆[W, u]

)

e{a0,a1,...,ak} 7−→ ∨∗(〈W, a0〉 × 〈W, a1〉 × · · · × 〈W, ak〉)

∈ Hk+1(∆∆[W, a0 ∩ a1 ∩ · · · ∩ ak]).

⊲ The sign ǫ(i0, . . . , ir) in Corollary 5.6 is also given by the degree of
the linear isomorphism

W/(Hi0 ∩Hi1 ∩ · · · ∩Hir) −→W/Hir ×W/Hir−1 × · · · ×W/Hi0

given by the canonical projections onto the factors.

6. Counterexamples regarding the general case

The results from the previous section fail if we are not dealing with (≥ 2)-
arrangements.

Consider an arrangement A that has a pair u, w of intersections with
codimR(u ⊂ w) = 1. Then

πu[w] \
⋃

w′∈(w,u]

πu[w′] = πu[w] \ πu[u] = w/u \ u/u,

which is the real line minus one point. Hence, there are up to homotopy two
possible choices for xu

w.
Already the arrangement in R

3 given by the coordinate hyperplanes shows
that the following phenomena occur.

⊲ The Goresky-MacPherson isomorphism from Proposition 3.1 de-
pends on the choice of the generic points.

⊲ The particular choice of generic points in Proposition 4.2 is neces-
sary.
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In the general case non-trivial muliplication can occur even if the codi-
mension condition is not satisfied. To construct an example consider the
“Hopf-arrangement” of six affine lines in R

3 as shown in Figure 1.

Figure 1. The “Hopf-arrangement” in R
3

Let the arrangement A be given by the spans of 0 ∈ R
4 and the re-

spective lines in the “Hopf-arrangement”, where R
3 is to be considered as

the subspace R
3 × {1} ⊂ R

4. Then the order complex ∆
(
(R4, 0)

)
consists

of two circles. A particular choice of generic points x0 is partially illus-
trated in Figure 1. x0

0 and x0
R4 are not shown. They are not of interest

anyway, since x0
0 = 0 and there is only one choice up to homotopy for x0

R4

since the complement of the arrangement is connected. The two dashed cir-
cles yield generating classes of H̃1

(
∆
(
(R4, 0)

))
∼= H3

(
∆∆[R4, 0]

)
; Section 8

gives information on this isomorphism and how to interpret it in terms of
the link LA. Since the circles are linked, the corresponding homology classes
have non-trivial intersection product, although 0 + 0 6= R

4.
In the last example one could suspect that there might have been a more

clever choice of generic points to circumvent the non-trivial multiplication.
This is not the case, in general it can happen that any choice of generic
points leads to non-trivial multiplication in the case where the codimension
condition is not satisfied. For this consider four distinct lines through the
origin in R

2. It is easy to see that any choice of generic points x0 allows
the choice of classes in H̃0

(
∆
(
(R2, 0)

))
∼= H2

(
∆∆[R2, 0]

)
that multiply non-

trivially: we can assume that x0
l ∈ S

1 for any line l. Now choose two pairs
of such points that are linked in the 1-sphere. The corresponding classes
multiply non-trivially.

7. A result regarding general arrangements

The examples above showed that one cannot expect to have a theorem like
Theorem 5.2 for more than (≥ 2)-arrangements. But even for a general real
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arrangement, the combinatorics of the arrangement describes some aspects
of the product structure of its complement.

A filtration of the homology of the link. Let A be a real linear sub-
space arrangement in W with intersection lattice P . Consider the following
filtration of H∗(W,

⋃
A ∪ CBǫ). For u ∈ P , define

Fu = Fu

(
H∗(W,

⋃
A ∪ CBǫ)

)

= Im
(
H∗(W,

⋃
Au ∪ CBǫ)

incl∗−−−→ H∗(W,
⋃
A ∪ CBǫ)

)
,

where Au = {w ∈ P : u ⊆ w}. Note that this corresponds to the fil-

tration Fu(H∗(W\
⋃
A)) = Im

(
H∗(W\

⋃
Au)

incl∗−−−→ H∗(W\
⋃
A)
)

on the
cohomology of the complement.

We want to use the filtration to relate the intersection product on the
homology with the combinatorial product as given in Theorem 5.2. We first
note that the intersection product respects the filtration.
7.1. Lemma. Let a ∈ Fu and b ∈ Fv. Then a• b ∈ Fu∩v for the intersection

product in homology.

Proof. Immediate by
⋃

Au ∪
⋃

Av ⊆
⋃

Au∩v and the fact that the intersec-
tion product is natural with respect to inclusions. �

A direct consequence is the following.
7.2. Lemma. Let u, v ∈ P satisfy the codimension condition, i.e., u + v =
W . Assume a ∈ Fu and b ∈

∑
w∈[W,v) Fw, then a • b ∈

∑
w∈[W,u∩v) Fw. �

The associated graded ring. Associated to the filtration (Fu)u∈P are the
graded abelian groups Gu given by

Gu = Fu

/
∑

w∈[W,u)

Fw , u ∈ P.

Consider the following induced product ⋆ on G =
⊕

u∈P Gu.

⋆ : Gu ⊗Gv → Gu∩v

[a] ⋆ [b] :=

{
[a • b], if u + v = W ,
0, else.

Lemma 7.1 and Lemma 7.2 show that ⋆ is well-defined.

Relation to Goresky-MacPherson isomorphisms. We can describe
the filtration in terms of a Goresky-MacPherson isomorphism.
7.3. Lemma. Let x be some choice of generic points. Then

Fu(H∗(W,
⋃
A ∪ CBǫ)) =

⊕

w∈[W,u]

(πu
! ◦ φxu

∗ ) [H∗(∆∆[W, w])] .
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Proof.
∑

w∈[W,u] π
w
! ◦φ

xw

∗ is a Goresky-MacPherson isomorphism for Au, and
the commutativity of the diagram

⊕
w∈[W,u] H∗(∆∆[W, w])

incl

P

w∈[W,u] πw
! ◦φxw

∗

∼=
H∗(W,

⋃
Au ∪ CBǫ)

incl∗

⊕
w∈[W,⊤] H∗(∆∆[W, w])

P

w∈[W,⊤] πw
! ◦φxw

∗

∼=
H̃∗(W,

⋃
A ∪ CBǫ)

implies the lemma. �

Note that although the direct sum decomposition depends on the choice
of generic points, the filtration does not. The following proposition gives im-
portant information on this dependence. It describes the effect of changing
generic points on the images of homology classes under the corresponding
Goresky-MacPherson isomorphisms.
7.4. Proposition. Let xu and x̃u be choices of generic points for the ar-

rangement A, and let a ∈ H∗(∆∆[W, u]). Then

(πu
! ◦ φxu

∗ )(a)− (πu
! ◦ φx̃u

∗ )(a) ∈
∑

w∈[W,u)

Fw.

Proof. It is sufficient to consider choices of xu and x̃u that differ for a single
v < u only. Now consider the subcomplex C of ∆[W, u] consisting of all
simplices containing v. Every vertex w of C is comparable with v, that is,
either contains v or is contained by v. Therefore xu

w ∈
⋃
Av/u for every

vertex w of C, w 6= W , and of course x̃u
v ∈

⋃
Av/u. This implies the

result. �

Now we only have to put things together to relate the combinatorial
product on

⊕
u∈[W,⊤] H∗

(
∆∆[W, u]

)
as in Theorem 5.2 and the multiplication

⋆ on G induced by the intersection product. Note that this will however say
nothing about products of classes not satisfying the codimension condition.
7.5. Theorem. Any choice x of generic points for A induces an isomor-

phism of rings

Ψ:
⊕

u∈[W,⊤]

H∗

(
∆∆[W, u]

)
→ G

by

H∗(∆∆[W, u])→ Gu

a 7→ [(πu
! ◦ φxu

∗ )(a)],

and any two of them are equal.

Proof. The fact that
∑

u

πu
! ◦ φxu

∗ :
⊕

u∈[W,⊤]

H∗

(
∆∆[W, u]

)
→ H∗(W,

⋃
A ∪ CBǫ)
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is an isomorphism of abelian groups together with Lemma 7.3 implies that
the induced homomorphism Ψ is also an isomorphism of abelian groups. Be-
cause of Proposition 7.4 it is independent of x. Because of this independence,
Proposition 4.2 suffices to ensure that Ψ is a ring homomorphism. �

8. The homology of the link

The isomorphism
⊕

u

H∗(∆∆[W, u])
∼=
−→ H∗(W,

⋃
A ∪ CBǫ)

∼=
−→ H∗(W\

⋃
A)

we have used throughout the paper is well suited for the computation of the
cohomology ring of the complement, but other closely related ones may be
better known to the reader. We describe the connections between some of
them in this section; this will include alternate descriptions of H∗(∆∆[W, u]).

The rest of this paper is independent of this section, it may however help
in the interpretation of the picture in Section 6.

The ordered chain complex C∗(∆∆[W, u]) of the pair

∆∆[W, u] = (∆[W, u], ∆(W, u] ∪∆[W, u))

is free abelian on the set of all simplices in ∆[W, u] containing both of the
vertices W and u. If W and u do not coincide, discarding these vertices yields
a bĳection, decreasing dimension by 2, into the set of all simplices in ∆(W, u)
if one allows the empty simplex in ∆(W, u). This induces an isomorphism
of C∗(∆∆[W, u]) with the augmented complex C̃∗(∆(W, u)); remarking that
∆∆[W, W ] = ({W}, Ø), one has

Hk(∆∆[W, u]) ∼=

{
H̃k−2(∆(W, u)), u > W,

Hk(point), u = W.

Note that H̃−1(Ø) ∼= Z, generated by the empty simplex.
The generator of H0(∆∆[W, W ]) is mapped under πW

! ◦ φxW

∗ to the orien-
tation class [W ] of W in Hd(W )(W,

⋃
A ∪ CBǫ).

For u > W we will use the description of this isomorphism as the compo-
sition

Hk(∆∆[W, u])
d⊤−→
∼=

Hk−1(∆[W, u), ∆(W, u))
d⊥−→
∼=

H̃k−2(∆(W, u))

of the connecting homomorphism of the homology sequence of the triple
∆(W, u] ⊂ ∆(W, u] ∪ ∆[W, u) ⊂ ∆[W, u] together with an excision isomor-
phism, and the connecting homorphism of the reduced homology sequence
of the pair ∆(W, u) ⊂ ∆[W, u).

Since φxu
[∆[W, u)] ⊂ CBǫ, we can consider the composition

r ◦ φxu
: ∆[W, u)→ SW/u,

where r denotes radial projection of CBW/u
ǫ to the unit sphere SW/u in W/u.

Identifying W with u×W/u, and therefore SW with Su∗SW/u, and orienting
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u and Su accordingly, we get a commutative diagram

H∗(W,
⋃
A ∪ CBǫ)

r∗◦d

∼=
H∗(SW , LA)

H∗(W/u,
⋃
A/u ∪ CBǫ)

r∗◦d

∼=

πu
!

H∗(SW/u, LA/u
)

a 7→(−1)(d(W )+|a|)d(u)[Su]∗a

Z⊕
⊕

u∈(W,⊤] H∗(∆∆[W, u])

[W/u]+
P

u φxu
∗

id⊕d⊤

∼=
Z⊕

⊕
u∈(W,⊤] H∗(∆[W, u), ∆(W, u)).

[SW/u]+
P

u(r◦φxu
)∗

The ds in the upper horizontal arrows denote compositions of connecting
homomorphisms and excision isomorphisms just as for d⊤. The map r ◦φxu

can be considered a variant of φxu
using generic points in SW/u and mapping

simplices in ∆[W, u) to geodesic simplices in SW/u. We define

Φxu
(a) := [Su] ∗ (r ◦ φxu

)∗(a)

as in the right coloumn of the diagram.
If we next assume that there is a point q ∈ SW \LA such that −xu

W lies
in the ray from the origin through πu(q) for every u ∈ [W,⊤], then Φxu

will
miss q, and we get a commutative diagram with exact columns

⊕
u∈(W,⊤] H∗(∆[W, u), ∆(W, u))

P

u Φxu

∼=
H∗(SW \{q}, LA)

Z⊕
⊕

u∈(W,⊤] H∗(∆[W, u), ∆(W, u))
[SW ]+

P

u Φxu

∼=
H∗(SW , LA)

Z
[SW ]

∼=
H∗(SW , SW \{q}),

where the right column —again— fits in a long exact sequence. Now using
the acyclicity of SW \{q} we get the diagram

H∗(SW \{q}, LA)
d

∼=
H̃∗(LA)

H∗(∆[W, u), ∆(W, u))
d⊥

∼=

Φxu

H̃∗(∆(W, u)).

(−1)d(u)Φxu



20 MARK DE LONGUEVILLE AND CARSTEN A. SCHULTZ

Fitting everything together gives the commutative diagram

H∗(W,
⋃
A ∪ CBǫ) ∼=

Z⊕ H̃∗(LA)

⊕
u∈[W,⊤] H∗(∆∆[W, u])

∼=

∼=
P

u

(
a 7→(−1)(d(W )+|a|)d(u)πu

! (φxu
∗ (a))

)

Z⊕
⊕

u∈(W,⊥] H̃∗(∆(W, u)).

∼= id⊕
P

u Φxu

The isomorphism on the right may be easier to visualise, because the di-
mensions are lower. It is also the one that results from applying the functor
H̃ to the homotopy equivalence between the link LA and a certain quotient,
identifying pairs of points, of

∐
u∈(W,⊤] S

d(u)−1 ∗∆(W, u) that is constructed

in [ZŽ93]. Starting with this result and working backwards through this
section gives an alternative proof of Proposition 3.1. Actually, in [ZŽ93],
the xu are not chosen independently, but satisfy xu

w = π⊤,u(x⊤
u ), but the

general case would follow from this one by Lemma 7.3 and Proposition 7.4.
It is on the basis of

⊕
u∈(W,⊥] H̃∗(∆(W, u)) that the cohomology ring of

the complement is described in [Yuz98].
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