"Combinatorics" Problem Set 9

Prof. Günter M. Ziegler Dr. Carsten Schultz

Version date: June 28, 2007 Issue date: June 29, 2007 Hand in date: July 4/5, 2007

Class homepage: http://carsten.codimi.de/comb07/

10. Permutations, Representations

- 35. Let C_n denote the cyclic group with n elements.
 - (i) Determine all irreducible complex representations of C_4 .
 - (ii) Determine all irreducible complex representations of $C_2 \times C_2$.
 - (iii) For one of the above groups, find an irreducible real representation of dimension greater than 1.
- 36. Let $\lambda = (\lambda_1, \dots, \lambda_k)$ be a partition of n. How many paermutations in S(n) are of cycle type λ ?
- 37. Describe the 2-dimensional irreducible representation of S(3) explicitly by a group homomorphism $S(3) \rightarrow U(2)$, where U(2) denotes the group of unitary complex (2×2) -matrices.
- 38. Let $\lambda = (\lambda_1, \dots, \lambda_k)$ be a partition of n, i.e. $\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_k > 0$ and $\sum_i \lambda_i = n$. We define a representation W_{λ} of S(n) as follows.

Set $a_i := 1 + \sum_{j < i} \lambda_j$ for $1 \le i \le k$. Let

$$M_{\lambda} := \{ \pi \in S(n) : \pi(a_i) < \pi(a_i + 1) < \dots < \pi(a_{i+1} + \lambda_i - 1) \text{ for all } i \}$$

For example, $M_{(n)} = {\text{id}}$, $M_{(1,...,1)} = S(n)$ and $|M_{(n-1,1)}| = n$. For $\sigma \in S(n)$ and $\pi \in M_{\lambda}$, let $\sigma \cdot \pi$ be the unique $\pi' \in M_{\lambda}$ with

$$\{\pi'(j) \colon a_i \le j < a_i + \lambda_i\} = \{(\sigma \circ \pi)(j) \colon a_i \le j < a_i + \lambda_i\} \quad \text{ for all } i.$$

Denote the induced representation on $\mathbb{C}^{|M_{\lambda}|}$ by W_{λ} .

- (i) Which well-known representations are $W_{(n)}$, $W_{(n-1,1)}$, and $W_{(1,\dots,1)}$?
- (ii) For all partitions λ of 4, determine the character $\chi_{W_{\lambda}}$ of the representation W_{λ} .
- (iii) Determine all irreducible characters of S(4). *Hint:* Consider the $\chi_{W_{\lambda}}$ for λ in the order (4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1) and use a procedure similar to Gram-Schmidt.