Problem 20. We consider S^2 with the Riemannian metric inherited from \mathbb{R}^3. On $U \subset S^2$, $U = \{(x^1, x^2, x^3) \in S^2 : x^3 > 0\}$ we introduce coordinates (y^1, y^2) with $y^1 = x^1, y^2 = x^2$ (compare Problem 2). On U we define vector fields

$$X_1 = \frac{\partial}{\partial y^1}, \quad X_2 = \frac{\partial}{\partial y^2};$$

$$Y_1 = y^1 \frac{\partial}{\partial y^1} + y^2 \frac{\partial}{\partial y^2}, \quad Y_2 = -y^2 \frac{\partial}{\partial y^1} + y^1 \frac{\partial}{\partial y^2}.$$

At which points of U are X_1 and X_2 orthogonal to each other? At which points of U are Y_1 and Y_2 orthogonal to each other?

Problem 21. Let N^k be a closed regular submanifold of M^n and X a smooth vector field on N. Prove that X can be extended to a smooth vector field on M.

Hint. For each $p \in N$ choose a neighborhood U_x of x in M and a preferred coordinate chart $\phi_x : U_x \to \mathbb{R}^n$. Use a partition of unity subordinate to the covering of M consisting of the sets U_x and the set $M \setminus N$.

Definition. A continuous function $f : X \to Y$ is called *proper*, if $f^{-1}[C]$ is compact for every compact $C \subset Y$.

Remark. In particular a continuous function $f : X \to \mathbb{R}$ is proper if and only if $\{x \in X : |f(x)| \leq K\}$ is compact for every $K > 0$.

Problem 22. Let M^n be a manifold. Prove that there is a proper smooth function $f : M \to \mathbb{R}_{\geq 0}$.

Hint. Exhaust M by compact sets $\emptyset = K_0 \subset K_1 \subset K_2 \subset \cdots$ as in the proof of the existence of regular coverings. From this obtain an open covering of M (consider the T_i in that proof) and a partition of unity subordinate to this covering and produce a function which takes only values greater than i on $M \setminus K_i$.

Hand-in date: December 2.