9. PROBLEM SET FOR "DIFFERENTIAL GEOMETRY II" AKA "ANALYSIS AND GEOMETRY ON MANIFOLDS" WINTER TERM 2009/10

Problem 26. Let *M* be a manifold and $\omega \in \bigwedge^1(M)$. Let $a, b \in \mathbb{R}$, a < b, and $F: [a, b] \to M$ be a smooth curve. Let $c, d \in \mathbb{R}$, c < d, and $g: [c, d] \to [a, b]$ be a smooth map with g(c) = a and g(d) = b. Prove that

$$\int_{[a,b]} F^*(\omega) = \int_{[c,d]} (F \circ g)^*(\omega).$$

What would we obtain if g(c) = b, g(d) = a?

Problem 27. Let $M = \mathbb{R}^n \setminus \{0\}$, $\omega \in \bigwedge^{n-1}(M)$, and $F: M \to M$, $F(x) = \frac{x}{\|x\|}$. Show that $F^*(\omega)$ is closed.

Problem 28. For $k \in \mathbb{Z}$ let

$$f_k \colon \mathbb{S}^1 \to \mathbb{R}^2 \setminus \{0\}$$
$$(\cos \phi, \sin \phi) \mapsto (\cos k\phi, \sin k\phi).$$

Note that this is well-defined. Also let $\omega \in \bigwedge^1(\mathbb{R}^2 \setminus \{0\})$ be defined by

$$\omega = \frac{-y\,dx + x\,dy}{x^2 + y^2}$$

- (i) Calculate $\int_{\mathbb{S}^1} f_k^*(\omega)$. (ii) Let $g \colon \mathbb{D}^2 \to \mathbb{R}^2 \setminus \{0\}$ be a smooth map. Show that $\int_{\mathbb{S}^1} g^*(\omega) = 0$. (Here \mathbb{D}^2 is the 2-disk and $\mathbb{S}^1 = \mathfrak{d}\mathbb{D}^2$.)
- (iii) For which k is there a smooth map $F: \mathbb{D}^2 \to \mathbb{R}^2 \setminus \{0\}$ such that $F|_{\mathbb{S}^1} = f_k?$

Hand-in date: January 13.