11. PROBLEM SET FOR "DIFFERENTIAL GEOMETRY II" AKA "ANALYSIS AND GEOMETRY ON MANIFOLDS" WINTER TERM 2009/10

Problem 32. Using the identity as a chart, we make

$$M = \{ (x^1, x^2) \in \mathbb{R}^2 \colon x^2 > 0 \}$$

into a 2-dimensional Riemannian manifold with the Riemannian metric given by $g_{ij} = (x^2)^{-2} \delta_{ij}$. Determine the values of Γ_{ij}^k and Γ_{ijk} .

Problem 33 (continues Problem 32). For the 2-manifold M and still using the same coordinates, determine the values of R_{ijkl} and R_{ikl}^{j} . Also compute the sectional curvature (here called the Gaussian curvature, since M is 2-dimensional) at each point of M.

Problem 34. For an arbitrary Riemannian manifold and a local coordinate system, compute R_{ikl}^{j} and R_{ijkl} in terms of Γ_{ij}^{k} and g_{ij} .

Hand-in date: January 27.