EXTRA PROBLEM SET FOR “DIFFERENTIAL GEOMETRY II” AKA “ANALYSIS AND GEOMETRY ON MANIFOLDS”
WINTER TERM 2009/10

Please see the remarks on our website.

Extra problem 1. Let \(n \geq 0 \) and \(a : S^n \to S^n \) be the antipodal map \(a(x) = -x \). Let \(\theta \in \bigwedge^n(S^n) \) be the form

\[
\theta = \sum_{k=1}^{n+1} (-1)^k x_k \, dx^1 \wedge \cdots \wedge dx^k \wedge \cdots \wedge dx^{n+1}.
\]

Compare the forms \(\theta \) and \(a^*(\theta) \).

Extra problem 2. Give an example of an \(\alpha \in \bigwedge^1(\mathbb{R}^3) \) such that \(d\alpha \) is nowhere zero but \(\alpha \wedge d\alpha = 0 \). For this \(\alpha \) show that the distribution \(\Delta \) defined by

\[
\Delta_p = \{ X \in T_p\mathbb{R}^3 : \alpha(p)(X) = 0 \}
\]

is involutive.

Extra problem 3. Let \(M^n \) be a manifold and \(F : M \to \mathbb{R}^m \) an embedding. For a vector \(0 \neq w \in \mathbb{R}^m \) consider the hyperplane \(H_w = \{ u \in \mathbb{R}^m : \langle u, w \rangle = 0 \} \) (a submanifold of \(\mathbb{R}^m \)) and the orthogonal projection

\[
p_w : \mathbb{R}^m \to H_w,
\]

\[
u \mapsto u - w \frac{\langle u, w \rangle}{\langle w, w \rangle}.
\]

Show that \(p_w \circ F \) is an embedding if and only if the following two conditions are satisfied.

(i) For all \(p, q \in M, p \neq q \), we have \(F(p) - F(q) \notin \mathbb{R}w \).

(ii) For every \(p \in M \) and \(0 \neq X_p \in T_p(M) \) we have

\[
w \neq F_*(X_p) \in T_{F(p)}\mathbb{R}^m \cong \mathbb{R}^m.
\]

(Slight abuse of notation here.)

Extra problem 4. Express the form \(\theta \in \bigwedge^2(S^2) \) of Extra problem 1 in stereographic coordinates (compare Problem 7).

Hand-in date: January 9.
Extra problem 5. Let $A, B \subset M$ be closed subsets of a manifold and $A \cap B = \emptyset$. Show that there is a smooth function $f: M \to \mathbb{R}_{\geq 0}$ such that $f(a) = 1$ for all $a \in A$ and $f(b) = 0$ for all $b \in B$.

Hint. Partition of unity.

Extra problem 6. Give an example of a manifold M, a point $p \in M$ and vector field X, Y, Z on M such that $X_p = Y_p$ but $(L_X Z)_p \neq (L_Y Z)_p$.