The Lovász Conjecture and extensions
Graph colourings, spaces of edges and spaces of circuits

Carsten Schultz
Technische Universität Berlin

Workshop on Topological Methods in Combinatorics
Stockholm 2006
Outline

1. Main result

2. Examples and Consequences
 - Cycles in complete and cyclic graphs
 - Graph colouring obstructions

3. Bits of the proof

4. Preview of further results
Outline

1 Main result

2 Examples and Consequences
 - Cycles in complete and cyclic graphs
 - Graph colouring obstructions

3 Bits of the proof

4 Preview of further results
Hom-posets and -complexes

- A graph homomorphism $G \to H$ is a function $V(G) \to V(H)$ that preserves the adjacency relation.
- A multi-homomorphism $\phi: G \to H$ is
 \[
 \phi: V(G) \to \mathcal{P}(V(H)) \setminus \{\emptyset\}
 \]
 such that every choice function for ϕ is a homomorphism
Hom-posets and -complexes

- A graph homomorphism $G \to H$ is a function $V(G) \to V(H)$ that preserves the adjacency relation.
- A multi-homomorphism $\phi : G \to H$ is
 \[\phi : V(G) \to \mathcal{P}(V(H)) \setminus \{\emptyset\} \]
 such that every choice function for ϕ is a homomorphism.
- $\text{Hom}(G, H)$ is the poset of all multi-homomorphisms from G to H.
- The composition map
 \[\star : \text{Hom}(G, G') \times \text{Hom}(G', G'') \to \text{Hom}(G, G'') \]
 \[(\phi \star \rho)(v) := \rho[\phi(v)] \]
 is associative and order-preserving.
Hom-posets and -complexes

- A graph homomorphism $G \rightarrow H$ is a function $V(G) \rightarrow V(H)$ that preserves the adjacency relation.
- A multi-homomorphism $\phi: G \rightarrow H$ is
 $$\phi: V(G) \rightarrow \mathcal{P}(V(H)) \setminus \{\emptyset\}$$
 such that every choice function for ϕ is a homomorphism.
- $\text{Hom}(G, H)$ is the poset of all multi-homomorphisms from G to H.
- The composition map
 $$\ast: \text{Hom}(G, G') \times \text{Hom}(G', G'') \longrightarrow \text{Hom}(G, G'')$$
 $$(\phi \ast \rho)(v) := \rho[\phi(v)]$$
 is associative and order-preserving.
- $\alpha: G \rightarrow G$ with $\alpha^2 = \text{id}$ makes $|\text{Hom}(G, H)|$ into a free \mathbb{Z}_2-space, if α flips an edge and H is loop-free.
- In particular, $|\text{Hom}(K_2, H)|$ is a free \mathbb{Z}_2-space.
Hom-posets and -complexes

- A graph homomorphism \(G \rightarrow H \) is a function \(V(G) \rightarrow V(H) \) that preserves the adjacency relation.
- A multi-homomorphism \(\phi : G \rightarrow H \) is
 \[
 \phi : V(G) \rightarrow \mathcal{P}(V(H)) \setminus \{\emptyset\}
 \]
 such that every choice function for \(\phi \) is a homomorphism.
- \(\text{Hom}(G, H) \) is the poset of all multi-homomorphisms from \(G \) to \(H \).
- The composition map
 \[
 \ast : \text{Hom}(G, G') \times \text{Hom}(G', G'') \rightarrow \text{Hom}(G, G'')
 \]
 \[(\phi \ast \rho)(v) := \rho[\phi(v)]\]
 is associative and order-preserving.
- \(\alpha : G \rightarrow G \) with \(\alpha^2 = \text{id} \) makes \(|\text{Hom}(G, H)| \) into a free \(\mathbb{Z}_2 \)-space, if \(\alpha \) flips an edge and \(H \) is loop-free.
- In particular, \(|\text{Hom}(K_2, H)| \) is a free \(\mathbb{Z}_2 \)-space.
- \(|\text{Hom}(K_2, K_n)| \approx_{\mathbb{Z}_2} S^{n-2} \).
Lovász’ Theorem and Conjecture

Theorem (Lovász ’78)

Let G be a graph. Then

$$\chi(G) \geq \text{ind}_{\mathbb{Z}_2} |\text{Hom}(K_2, G)| + 2.$$

Theorem (Babson & Kozlov ’04)

Let G be a graph, $r \geq 1$. Then

$$\chi(G) \geq \text{coind}_{\mathbb{Z}_2} |\text{Hom}(C_{2r+1}, G)| + 3.$$
Lovász’ Theorem and Conjecture

Theorem (Lovász ’78)

Let G be a graph. Then

$$\chi(G) \geq \text{ind}_{\mathbb{Z}_2} |\text{Hom}(K_2, G)| + 2.$$

Theorem (Babson & Kozlov ’04)

Let G be a graph, $r \geq 1$. Then

$$\chi(G) \geq \text{coind}_{\mathbb{Z}_2} |\text{Hom}(C_{2r+1}, G)| + 3.$$

Question

What is the relationship between $\text{Hom}(K_2, G)$ and $\text{Hom}(C_{2r+1}, G)$?
Spaces of cycles of arbitrary lengths

The main theorem

- There is a homomorphism $C_{m+2} \to \mathbb{Z}_2 C_m$.
- This induces $\text{Hom}(C_m, G) \to \mathbb{Z}_2 \text{Hom}(C_{m+2}, G)$.
- We can consider $\text{colim}_r |\text{Hom}(C_{2r+1}, G)|$.
Spaces of cycles of arbitrary lengths

The main theorem

- There is a homomorphism $C_{m+2} \rightarrow \mathbb{Z}_2 C_m$.
- This induces $\text{Hom}(C_m, G) \rightarrow \mathbb{Z}_2 \text{Hom}(C_{m+2}, G)$.
- We can consider $\text{colim}_r |\text{Hom}(C_{2r+1}, G)|$.

Theorem

$$\text{colim}_r |\text{Hom}(C_{2r+1}, G)| \cong \mathbb{Z}_2 \text{Map}_{\mathbb{Z}_2}(\mathbb{S}^1_b, |\text{Hom}(K_2, G)|)$$

$$\text{colim}_r |\text{Hom}(C_{2r}, G)| \cong \mathbb{Z}_2 \text{Map}(\mathbb{S}^1_b, |\text{Hom}(K_2, G)|)$$
Outline

1. Main result

2. Examples and Consequences
 - Cycles in complete and cyclic graphs
 - Graph colouring obstructions

3. Bits of the proof

4. Preview of further results
Spaces of cycles of arbitrary lengths in complete graphs

Since $|\text{Hom}(K_2, K_n)| \approx \mathbb{Z}_2 \mathbb{S}^{n-2}$:
- $\text{colim}_r |\text{Hom}(C_{2r}, K_n)| \simeq \text{Map}(\mathbb{S}^1, \mathbb{S}^{n-2})$ free loop space of a sphere.
- $\text{colim}_r |\text{Hom}(C_{2r+1}, K_n)| \simeq \text{Map}_{\mathbb{Z}_2}(\mathbb{S}^1, \mathbb{S}^{n-2})$.

Spaces of cycles of arbitrary lengths
in complete graphs

Since $|\text{Hom}(K_2, K_n)| \approx \mathbb{Z}_2 \mathbb{S}^{n-2}$:
- $\text{colim}_r |\text{Hom}(C_{2r}, K_n)| \simeq \text{Map}(\mathbb{S}^1, \mathbb{S}^{n-2})$ free loop space of a sphere.
- $\text{colim}_r |\text{Hom}(C_{2r+1}, K_n)| \simeq \text{Map}_{\mathbb{Z}_2}(\mathbb{S}^1, \mathbb{S}^{n-2})$.

There is a canonical embedding map

$$V_{2,n-1} := \{ (x, y) \in \mathbb{S}^{n-2} : \langle x, y \rangle = 0 \} \longrightarrow \text{Map}_{\mathbb{Z}_2}(\mathbb{S}^1, \mathbb{S}^{n-2})$$

“Start at x, follow great circle through y.”

Spaces of cycles of arbitrary lengths in complete graphs

Since $|\text{Hom}(K_2, K_n)| \approx \mathbb{Z}_2 \mathbb{S}^{n-2}$:
- $\text{colim}_r |\text{Hom}(C_{2r}, K_n)| \cong \text{Map}(\mathbb{S}^1, \mathbb{S}^{n-2})$: free loop space of a sphere.
- $\text{colim}_r |\text{Hom}(C_{2r+1}, K_n)| \cong \text{Map}_{\mathbb{Z}_2}(\mathbb{S}^1, \mathbb{S}^{n-2})$.

There is a canonical embedding map

$$V_{2,n-1} := \{ (x, y) \in \mathbb{S}^{n-2} : \langle x, y \rangle = 0 \} \longrightarrow \text{Map}_{\mathbb{Z}_2}(\mathbb{S}^1, \mathbb{S}^{n-2})$$

“Start at x, follow great circle through y.”

Theorem (S, conjectured by Csorba)

$$|\text{Hom}(C_5, K_n)| \approx V_{2,n-1}.$$

Kozlov, D. N. Cohomology of colorings of cycles, 2005. math.AT/0507117.

Csorba, P. and Lutz, F. H. Graph coloring manifolds, 2005. math.CO/0510177.
Spaces of cycles of arbitrary lengths in cyclic graphs

Proposition

\[
\left| \text{Hom}(K_2, C_{2r+1}) \right| \approx \mathbb{Z}_2
\]

\[
\left| \text{Hom}(K_2, C_{2r}) \right| \approx \mathbb{Z}_2
\]

Spaces of cycles of arbitrary lengths
in cyclic graphs

Proposition

\[|\text{Hom}(K_2, C_{2r+1})| \approx \mathbb{Z}_2 \]
\[|\text{Hom}(K_2, C_{2r})| \approx \mathbb{Z}_2 \]

Corollary

\[\text{colim}_r |\text{Hom}(C_{2r}, C_m)| \approx \text{Map}(S^1, |\text{Hom}(K_2, C_m)|) \approx \bigsqcup_{\mathbb{Z}} S^1 \]
\[\text{colim}_r |\text{Hom}(C_{2r+1}, C_m)| \approx \text{Map}_{\mathbb{Z}_2}(S^1, |\text{Hom}(K_2, C_m)|) \approx \begin{cases} \bigsqcup_{\mathbb{Z}} S^1, & \text{if } m \text{ odd,} \\ \emptyset, & \text{if } m \text{ even.} \end{cases} \]
Free \mathbb{Z}_2-spaces

Definition

Let X be a free \mathbb{Z}_2-space. We define

\[
\text{ind}_{\mathbb{Z}_2} X := \min \left\{ k : \text{There is a } \mathbb{Z}_2\text{-map } X \to S^k \right\},
\]

\[
\text{coind}_{\mathbb{Z}_2} X := \max \left\{ k : \text{There is a } \mathbb{Z}_2\text{-map } S^k \to X \right\},
\]

\[
\text{cohom-ind}_{\mathbb{Z}_2} X := \max \left\{ k : f^*(\gamma^k) \neq 0 \right\},
\]

where $f : X/\mathbb{Z}_2 \to \mathbb{R}P^\infty$ is classifying and $H^*\left(\mathbb{R}P^\infty; \mathbb{Z}_2\right) = \mathbb{Z}_2[\gamma]$.
Free \mathbb{Z}_2-spaces

Definition

Let X be a free \mathbb{Z}_2-space. We define

\[
\text{ind}_\mathbb{Z}_2 X := \min \left\{ k : \text{There is a } \mathbb{Z}_2\text{-map } X \to S^k \right\},
\]

\[
\text{coind}_\mathbb{Z}_2 X := \max \left\{ k : \text{There is a } \mathbb{Z}_2\text{-map } S^k \to X \right\},
\]

\[
\text{cohom-ind}_\mathbb{Z}_2 X := \max \left\{ k : f^*(\gamma^k) \neq 0 \right\},
\]

where $f : X/\mathbb{Z}_2 \to \mathbb{RP}^\infty$ is classifying and $H^*(\mathbb{RP}^\infty; \mathbb{Z}_2) = \mathbb{Z}_2[\gamma]$.

Properties

- $\text{conn } X + 1 \leq \text{coind}_\mathbb{Z}_2 X \leq \text{cohom-ind}_\mathbb{Z}_2 X \leq \text{ind}_\mathbb{Z}_2 X$
- $\text{coind}_\mathbb{Z}_2 S^n = \text{ind}_\mathbb{Z}_2 S^n = n$
- If there is $X \to \mathbb{Z}_2 Y$ then $x\text{-ind}_\mathbb{Z}_2 X \leq x\text{-ind}_\mathbb{Z}_2 Y$.
Some topological facts

Let X, Y be free \mathbb{Z}_2-spaces and S^1_b the 1-sphere with the \mathbb{Z}_2-operations

$$\tau \cdot (x_0, x_1) := (-x_0, -x_1), \quad (x_0, x_k) \cdot \tau := (-x_0, x_1).$$

There is an adjunction

$$\text{Top}^{\mathbb{Z}_2}(Y, \text{Map}_{\mathbb{Z}_2}(S^1_b, X)) \cong \text{Top}^{\mathbb{Z}_2}(S^1_b \times \mathbb{Z}_2 Y, X).$$
Some topological facts

Let X, Y be free \mathbb{Z}_2-spaces and S^1_b the 1-sphere with the \mathbb{Z}_2-operations

$$\tau \cdot (x_0, x_1) := (-x_0, -x_1), \quad (x_0, x_k) \cdot \tau := (-x_0, x_1).$$

- There is an adjunction

$$\text{Top}_{\mathbb{Z}_2}(Y, \text{Map}_{\mathbb{Z}_2}(S^1_b, X)) \cong \text{Top}_{\mathbb{Z}_2}(S^1_b \times \mathbb{Z}_2 Y, X).$$

- We obtain inequalities

$$\text{cohom-ind}_{\mathbb{Z}_2} X + 1 \leq \text{cohom-ind}_{\mathbb{Z}_2}(S^1_b \times \mathbb{Z}_2 X),$$

$$\text{ind}_{\mathbb{Z}_2}(S^1_b \times \mathbb{Z}_2 X) \leq \text{ind}_{\mathbb{Z}_2} X + 1,$$

$$\text{cohom-ind}_{\mathbb{Z}_2} \text{Map}_{\mathbb{Z}_2}(S^1_b, X) + 1 \leq \text{cohom-ind}_{\mathbb{Z}_2} X,$$

$$\text{coind}_{\mathbb{Z}_2} X \leq \text{coind}_{\mathbb{Z}_2} \text{Map}_{\mathbb{Z}_2}(S^1_b, X) + 1.$$
Spaces of cycles of arbitrary lengths
Consequences

Theorems (Lovász '78, Babson & Kozlov '04)

\[\chi(G) \geq \text{ind}_{\mathbb{Z}_2} |\text{Hom}(K_2, G)| + 2. \]
\[\chi(G) \geq \text{coind}_{\mathbb{Z}_2} |\text{Hom}(C_{2r+1}, G)| + 3. \]

Theorem

\[\text{colim}_r |\text{Hom}(C_{2r+1}, G)| \cong_{\mathbb{Z}_2} \text{Map}_{\mathbb{Z}_2} (S^1_b, |\text{Hom}(K_2, G)|). \]
Spaces of cycles of arbitrary lengths

Consequences

Theorems (Lovász ’78, Babson & Kozlov ’04)

\[
\chi(G) \geq \text{ind}_{\mathbb{Z}_2}|\text{Hom}(K_2, G)| + 2.
\]
\[
\chi(G) \geq \text{coind}_{\mathbb{Z}_2}|\text{Hom}(C_{2r+1}, G)| + 3.
\]

Theorem

\[
\text{colim}_r|\text{Hom}(C_{2r+1}, G)| \cong_{\mathbb{Z}_2} \text{Map}_{\mathbb{Z}_2}(S^1_b, |\text{Hom}(K_2, G)|).
\]

Corollary

\[
\text{cohom-ind}_{\mathbb{Z}_2}|\text{Hom}(C_{2r+1}, G)| + 1 \leq \text{cohom-ind}_{\mathbb{Z}_2}|\text{Hom}(K_2, G)|.
\]
\[
\lim_{r \to \infty} \text{coind}_{\mathbb{Z}_2}|\text{Hom}(C_{2r+1}, G)| + 1 \geq \text{coind}_{\mathbb{Z}_2}|\text{Hom}(K_2, G)|.
\]
Outline

1. Main result

2. Examples and Consequences
 - Cycles in complete and cyclic graphs
 - Graph colouring obstructions

3. Bits of the proof

4. Preview of further results
Hom(K_2, C_{2r+1})
A closer look.

Reminder

We want to compare Hom(K_2, G) and Hom(C_{2r+1}, G).
$\text{Hom}(K_2, C_{2r+1})$

A closer look.

Definition

S^1_b is the 1-sphere with the \mathbb{Z}_2-operations

\[
\tau \cdot (x_0, x_1) := (-x_0, -x_1), \quad (x_0, x_k) \cdot \tau := (-x_0, x_1).
\]

Proposition

\[
|\text{Hom}(K_2, C_{2r+1})| \approx \mathbb{Z}_2 \times \mathbb{Z}_2 \times S^1_b
\]
The easy part

- The composition map

$$\text{Hom}(K_2, C_{2r+1}) \times \text{Hom}(C_{2r+1}, G) \rightarrow \text{Hom}(K_2, G)$$

yields

$$S^1_b \times \mathbb{Z}_2 |\text{Hom}(C_{2r+1}, G)| \rightarrow \mathbb{Z}_2 |\text{Hom}(K_2, G)|.$$
The easy part

- The composition map

\[\text{Hom}(K_2, C_{2r+1}) \times \text{Hom}(C_{2r+1}, G) \rightarrow \text{Hom}(K_2, G) \]

yields

\[S^1_b \times \mathbb{Z}_2 |\text{Hom}(C_{2r+1}, G)| \rightarrow \mathbb{Z}_2 |\text{Hom}(K_2, G)|. \]

- Direct consequence:

\[\text{cohom-ind}_{\mathbb{Z}_2} |\text{Hom}(C_{2r+1}, G)| + 1 \leq \text{cohom-ind}_{\mathbb{Z}_2} |\text{Hom}(K_2, G)|. \]
The easy part

- The composition map

\[\text{Hom}(K_2, C_{2r+1}) \times \text{Hom}(C_{2r+1}, G) \rightarrow \text{Hom}(K_2, G) \]

yields

\[S_b^1 \times \mathbb{Z}_2 |\text{Hom}(C_{2r+1}, G)| \rightarrow \mathbb{Z}_2 |\text{Hom}(K_2, G)|. \]

- Direct consequence:

\[\text{cohom-ind}_{\mathbb{Z}_2}|\text{Hom}(C_{2r+1}, G)| + 1 \leq \text{cohom-ind}_{\mathbb{Z}_2}|\text{Hom}(K_2, G)|. \]

- This already proves the Lovász Conjecture.
The easy part

- The composition map
 \[\text{Hom}(K_2, C_{2r+1}) \times \text{Hom}(C_{2r+1}, G) \longrightarrow \text{Hom}(K_2, G) \]
yields
 \[S^1_b \times \mathbb{Z}_2 |\text{Hom}(C_{2r+1}, G)| \longrightarrow \mathbb{Z}_2 |\text{Hom}(K_2, G)|. \]
- Direct consequence:
 \[\text{cohom-ind}_{\mathbb{Z}_2}|\text{Hom}(C_{2r+1}, G)| + 1 \leq \text{cohom-ind}_{\mathbb{Z}_2}|\text{Hom}(K_2, G)|. \]
- This already proves the Lovász Conjecture.
- The adjoint maps
 \[|\text{Hom}(C_{2r+1}, G)| \longrightarrow \mathbb{Z}_2 \text{ Map}_{\mathbb{Z}_2}(S^1_b, |\text{Hom}(K_2, G)|) \]
can be fitted together to
 \[\text{colim} |\text{Hom}(C_{2r+1}, G)| \longrightarrow \mathbb{Z}_2 \text{ Map}_{\mathbb{Z}_2}(S^1_b, |\text{Hom}(K_2, G)|). \]

math.CO/0506075.
A further hint at the relationship between \(\text{Hom}(K_2, G) \) and \(\text{Hom}(C_{2r+1}, G) \).

Proposition

\[
\text{Map}_{\mathbb{Z}_2}(S^1_b, \vert \text{Hom}(K_2, G) \vert) \neq \emptyset \\
\iff \vert \text{Hom}(C_{2r+1}, G) \vert \neq \emptyset \text{ for } r \text{ large enough.}
\]

Proof.

Outline

1 Main result

2 Examples and Consequences
 - Cycles in complete and cyclic graphs
 - Graph colouring obstructions

3 Bits of the proof

4 Preview of further results
Generalizations

joint with Babson & Dochtermann

Definition

We define graphs $T_{k,r}$ for $k, r \geq 1$.

$$T_{1,r} = C_{2r+1}$$

$$T_{2,2}$$
Generalizations
joint with Babson & Dochtermann

Definition

We define graphs $T_{k,r}$ for $k, r \geq 1$. ($T_{1,r} = C_{2r+1}, \ldots$)

Theorem

$$\lim_{r \to \infty} \text{coind}_{\mathbb{Z}_2} |\text{Hom}(T_{k,r}, G)| + k \geq \text{coind}_{\mathbb{Z}_2} |\text{Hom}(K_2, G)|$$

$$\text{cohom-ind}_{\mathbb{Z}_2} |\text{Hom}(T_{k,r}, G)| + k \leq \text{cohom-ind}_{\mathbb{Z}_2} |\text{Hom}(K_2, G)|$$
Generalizations
joint with Babson & Dochtermann

Definition
We define graphs $T_{k,r}$ for $k, r \geq 1$. ($T_{1,r} = C_{2r+1}, \ldots$)

Theorem

\[
\begin{align*}
\cohom\text{-}\mathrm{ind}_{\mathbb{Z}_2}|\Hom(T_{k,r}, G)| + k &\leq \cohom\text{-}\mathrm{ind}_{\mathbb{Z}_2}|\Hom(K_2, G)| \\
\lim_{r \to \infty} \coind_{\mathbb{Z}_2}|\Hom(T_{k,r}, G)| + k &\geq \coind_{\mathbb{Z}_2}|\Hom(K_2, G)|
\end{align*}
\]

Corollary

\[
\begin{align*}
\coind_{\mathbb{Z}_2}|\Hom(K_2, G)| &\leq \max \{ k : \text{Ex. } r \geq 1 \text{ and } T_{k,r} \to G \} \\
&\leq \cohom\text{-}\mathrm{ind}_{\mathbb{Z}_2}|\Hom(K_2, G)| \leq \chi(G) - 2.
\end{align*}
\]
Generalizations

joint with Babson & Dochtermann

Definition

We define graphs $T_{k,r}$ for $k, r \geq 1$. ($T_{1,r} = C_{2r+1}, \ldots$)

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
</table>
| $\text{cohom-ind}_{\mathbb{Z}_2}|\text{Hom}(T_{k,r}, G)| + k \leq \text{cohom-ind}_{\mathbb{Z}_2}|\text{Hom}(K_2, G)|$
| $\lim_{{r \to \infty}} \text{coind}_{\mathbb{Z}_2}|\text{Hom}(T_{k,r}, G)| + k \geq \text{coind}_{\mathbb{Z}_2}|\text{Hom}(K_2, G)|$ |

<table>
<thead>
<tr>
<th>Corollary</th>
</tr>
</thead>
</table>
| $\text{coind}_{\mathbb{Z}_2}|\text{Hom}(K_2, G)| \leq \max \{ k : \text{Ex. } r \geq 1 \text{ and } T_{k,r} \to G \}$
| $\leq \text{cohom-ind}_{\mathbb{Z}_2}|\text{Hom}(K_2, G)| \leq \chi(G) - 2$. |
| $\chi(T_{k,r}) \geq k + 2$
| $\chi(T_{k,r}) = k + 2$, if r is large enough. |
Generalizations
joint with Babson & Dochtermann

Definition
We define graphs $T_{k,r}$ for $k, r \geq 1$. ($T_{1,r} = C_{2r+1}, \ldots$)

Theorem
\[
\text{cohom-ind}_{\mathbb{Z}_2}|\text{Hom}(T_{k,r}, G)| + k \leq \text{cohom-ind}_{\mathbb{Z}_2}|\text{Hom}(K_2, G)|
\]
\[
\lim_{r \to \infty} \text{coind}_{\mathbb{Z}_2}|\text{Hom}(T_{k,r}, G)| + k \geq \text{coind}_{\mathbb{Z}_2}|\text{Hom}(K_2, G)|
\]

Corollary
- $\text{coind}_{\mathbb{Z}_2}|\text{Hom}(K_2, G)| \leq \max \{k : \text{Ex. } r \geq 1 \text{ and } T_{k,r} \to G\}$
 $\leq \text{cohom-ind}_{\mathbb{Z}_2}|\text{Hom}(K_2, G)| \leq \chi(G) - 2.$
- $\chi(T_{k,r}) \geq k + 2, \quad \chi(T_{k,r}) = k + 2, \text{ if } r \text{ is large enough.}$
- If e.g. K is a Kneser graph with $\chi(K) = k + 2$, then
 $\text{coind}_{\mathbb{Z}_2}|\text{Hom}(K_2, K)| = k$ and hence there exist r and $T_{k,r} \to K$.
In the limit, the \mathbb{Z}_2-homotopy type of $\text{Hom}(C_{2r+1}, G)$ is determined by the \mathbb{Z}_2-homotopy type of $\text{Hom}(K_2, G)$.
In the limit, the \mathbb{Z}_2-homotopy type of $\text{Hom}(C_{2r+1}, G)$ is determined by the \mathbb{Z}_2-homotopy type of $\text{Hom}(K_2, G)$.

The bounds on $\chi(G)$ obtained from $\text{Hom}(K_2, G)$ and $\text{Hom}(C_{2r+1}, G)$ for large r are essentially the same.
In the limit, the \mathbb{Z}_2-homotopy type of $\text{Hom}(C_{2r+1}, G)$ is determined by the \mathbb{Z}_2-homotopy type of $\text{Hom}(K_2, G)$.

The bounds on $\chi(G)$ obtained from $\text{Hom}(K_2, G)$ and $\text{Hom}(C_{2r+1}, G)$ for large r are essentially the same.

$\text{coind}_{\mathbb{Z}_2} \text{Hom}(K_2, G)$ can be described combinatorially via the existence of graph homomorphisms to G.